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The exponential divergence of nearby phase space trajectories is a hallmark of 
nonperiodic (chaotic) behavior in dynamical systems. We present the first 
laboratory of measurements of divergence rates (or characteristic exponents), 
using a system of coupled tunnel diode relaxation osciIlators. This property of 
sensitive dependence on initial conditions is reliably associated with broadband 
spectra, and both methods are used to characterize the motion as a function of 
the coupling strength and natural frequency ratio of the two oscillators. 
A simple piecewise linear model correctly predicts the major periodic and non- 
periodic regions of the parameter space, thus confirming that the chaotic behavior 
involves only a few degrees of freedom. 

KEY WORDS: Dynamical systems; oscillators; chaos; turbulence; nonlinear 
phenomena. 

1. I N T R O D U C T I O N  

N o n p e r i o d i c  m o t i o n  is diss ipat ive dynamica l  systems is ex t remely  sensitive 
to init ial  condi t ions .  Two t ra jector ies  in phase  space that  ini t ial ly differ by a 
small  a m o u n t  will separa te  exponent ia l ly  in t ime, and  the ra te  o f  divergence,  
averaged  a long  a t ra jec tory ,  is one way o f  charac te r iz ing  the degree o f  non-  
per iod ic i ty  or  i r regular i ty  o f  the mot ion .  Iz'2) The divergence ra te  has been 
c o m p u t e d  in numer ica l  studies,  ~a-7) but  has not  been previous ly  measured  
in l a b o r a t o r y  studies o f  nonper iod ic  mot ion .  We have invest igated an 
electronic system o f  coupled  tunnel  d iode  osci l la tors  (8) tha t  exhibi ts  non-  
per iodic  behav ior  in some regions o f  its p a r a m e t e r  space and per iodic  
behav ior  in others.  We find that  posi t ive  divergence ra te  is re l iably  
associa ted  with con t inuous  ( b r o a d b a n d )  spectra,  a more  conven t iona l  
d iagnos t ic  cr i te r ion  for  nonper iod ic i ty  in exper iments .  
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We have also performed numerical computations on a simple model for 
this electronic system, using both spectra and divergence rate to characterize 
the motion as a function of the coupling strength and natural frequency ratio 
of the two oscillators. The model generally reproduces the behavior of the 
laboratory system. In particular, it exhibits nonperiodic motion for appro- 
priate choices of parameters. By comparing the circuit with the model, we 
have been able to confirm that the nonperiodic time dependence is in- 
trinsic and of macroscopic origin. The demonstration of fairly detailed 
agreement between a physical nonperiodic system and a corresponding model 
is perhaps useful in view of the general difficulty of comparing experiments 
and models of the onset of turbulence. (9-~3) 

2. C O U P L E D  T U N N E L  D I O D E  O S C I L L A T O R S  
The oscillator system used in this study is shown in Fig. la. It consists 

of two coupled relaxation oscillators based on tunnel diodes, each of which 
has the current-voltage characteristic shown in Fig. lb. To understand the 
functioning of this circuit, consider a single oscillator (the left-hand loop of 
Fig. la, for example) in isolation. For an appropriate choice of the driving 
voltage V o and resistance R1, an instability drives the circuit into oscillations 
in which the loop shown in Fig. lb is repetitively executed in a time of the 
order of L1/RI. The current ID1 then has the form of rising and de- 
scending exponentials, and the voltage V m switches between roughly con- 
stant high and low values when I m attains threshold values I s or I n. 

The system actually studied consists of two of these oscillators coupled 
together by the conductance Gc =- 1/Rc (Fig. la). Its state is described by 
a point in a four-dimensional phase (or state) space with coordinates Vm, 
Vv2, Ira, and I/)2. The coupling causes the current through each diode to 
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Fig. 1. (a) Tunnel  diode oscillator circmt. Each oscillator consists of  an inductor, a resistor, 
and a tunnel diode; the two oscillators are coupled by the resistor Rc = 1 ~Go. (b) Current-voltage 
characteristic of  the tunnel diode (in series with a 1-fl shunt  resistor). The switching currents are 
I~ and 1~. Arrows indicate the path of oscillation. 
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depend on the voltage difference Vz~2- Vm, and can result in induced 
switching of one oscillator by the other. 

We have previously shown tsi that this system exhibits nonperiodicity for 
certain values of V0, as indicated by power spectra of V m and Vz)2. 
A theoretical discussion of a somewhat different tunnel diode system has been 
given by Rabinovich. t~3) In this paper we show experimentally (Section 4) 
that the circuit also has the expected property of exponential divergence of 
trajectories in phase space when the spectra indicate nonperiodicity, and we 
map out the regions of  nonperiodicity in the space defined by two parameters : 
the coupling conductance Gc, and the frequency ratio of the uncoupled 
oscillators F o -(Jl/J2)o. We then show in Section 6 that most of the 
observations can be obtained from a simple model. 

3. DETECTION OF N O N P E R I O D I C I T Y  

Reliable criteria for detecting nonperiodicity in laboratory experiments 
are important. It is not sufficient simply to note erratic time dependence, 
since such behavior may actually be quasiperiodic, a superposition of discrete 
frequencies/9~ A common method is to identify nonperiodic motion by a 
continuous (broadband) spectrum. This criterion can in principle also be 
misleading, because of  the finite spectral resolution in any laboratory or 
numerical experiment. Another approach sometimes used in numerical 
computations is to calculate the sensitivity of the system to perturbations. 
Periodic motion is typically insensitive to small perturbations. For non- 
periodic motion, trajectories which are initially separated by a small amount 
will diverge from each other exponentially, on the average. Here we show 
that the divergence rate can sometimes be measured in laboratory experi- 
ments, even though initial conditions cannot be controlled. 

The divergence rate is defined (11 by the expression 

h(xo) = lim{(1/Q lira ln[d(z)/d]} (1) 
r ~ O  d ~ O  

where d(r) is the separation of  a selected trajectory from another at a time 
interval z after their separation was d, and the bar indicates an average over 
the selected trajectory (beginning at Xo) while keeping d constant. The 
quantity h(xo) gives the rate of exponential divergence, averaged over a 
trajectory that begins at Xo. It is generally expected to be a constant for all 
initial conditions leading to a given nonperiodic attracting set, so we will 
omit the argument Xo. (It is also equal to the maximum Lyapunov charac- 
teristic exponent for the growth of  small displacements in the various 
coordinme directions, (a) and is closely related to the Kolmogorov-Sinai  
dynamical entropy (14~ which frequently appears in the literature on ergodic 
theory.) 
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In laboratory experiments, it is useful if possible to work with discrete 
time systems rather than flows, by observing only the repetitive intersections 
of trajectories with a fixed hyperplane in phase space on which one or more 
variables are constant. The corresponding mapping of the hyperplane onto 
itself is generally called a return map or Poincar~ map, ~5) and may be 
specified by a transfer function x~+l =f(xi ) .  The divergence rate is then 

1 N 
h = lim lim 2 In d,  (2) 

u ~  d ~ 0 N , = t  d 

where d, is the distance between the images of two points separated by d 
prior to application of the mapping. In this expression, the sum over n plays 
the role o f  the time average in Eq. (1). In the simplest case of a one- 
dimensional map, where the domain o f f ( x )  is a line, Eq. (2) has a simple 
geometrical interpretation. It can be rewritten ~7) as 

' i  
h = l i m -  lntf '(x,)l  (3) 

N~oo N n ~  l 

where IJ"(x,)] is the magnitude of the slope of the transfer function at x,.  
Thus h is just the average logarithm of the magnitudes of  the slopes at points 
visited by iteration of the map. The shape of the return map can therefore be 
used to determine the divergence rate, a positive value being indicative of 
nonperiodic motion. 

4. L A B O R A T O R Y  E X P E R I M E N T S :  P O I N C A R E  M A P S ,  
D I V E R G E N C E  RATES, A N D  SPECTRA 

The circuit shown in Fig. 1 was constructed with attention to the mini- 
mization of stray inductance, capacitance, and external noise. The diodes were 
1N3720, and the inductors were copper coils with a few ohms resistance 
wound on ferrite cores, One inductor was fixed at 7 mH, while the other 
could be varied by withdrawing a ferrite core which was attached to a 
micrometer. This allowed the frequency ratio Fo of the uncoupled oscillators 
to be varied continuously and reproducibly to a precision of 0.5~176 The 
coupling conductance (7< was noninductive and could also be varied smoothly 
over a wide range. The constant-voltage source was provided by a regu- 
lated dc power supply with stability of 0.1% and inductance less than 
2 x 10- 3 mH. The circuit was well shielded, and 1-kf~ resistors in series with 
the output terminals reduced the possibility that noise from external sources 
could create significant currents in this low-impedance circuit. The diode 
currents were monitored using 1-f~ shunt resistors (not shown) in series with 
the diodes. The voltages VD1 and VD2 thus included a small contribution 
(about 3~ of the maximum voltage) from these shunt resistors. 
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Return maps were constructed with the aid of  sample-and-hold devices 
and a laboratory computer,  as shown schematically in Fig. 2. Our object 
was to obtain a one-dimensional mapping of the form (lo2), + 1 =f(( lo2) , )  
and this was achieved as follows. The sampling process was initiated each 
time VD1 passed through the value 0.42 V in the decreasing sense. The 
current-voltage characteristic then constrained IDI to be 5 mA. A negative 
going step from the compara tor  triggered the sample-and-hold circuits and 
enabled the analog-to-digital converter after a 15-#s aquisition time had 
elapsed. In this way, ID2 and VD2 were measured essentially instantaneously 
in comparison with the characteristic time scale of  the circuit. (The natural 
frequencies were about 1000 Hz.) Typically, we sampled ID2 and V m 1000 
times to construct a return map. The final step was to sort the data to 
include only points for which VD2 < 0.2 V. This restricted lo2 and VD2 to 
the left-hand segment of  the characteristic in Fig. lb, where there is a 
one-to-one functional relationship between them. Thus, ID2 determined Vv2 , 
and hence the n e x t  value of Ivz  as well (since V m and Im were fixed). 
By this sampling process, a one-dimensional mapping was obtained. 

Two examples of  the resulting maps are shown in Fig. 3. The first one 
was made in a phase-locked periodic state in which the ratio of  the mean 
frequencies is F = f l / f 2  = 15/8. As expected, the return map consists of  only a 
discrete set of  points, except for an initial transient, which is not shown. 
The divergence rate for this periodic state is negative, as can be verified by 
examining the transient behavior. By changing G c and F0, qualitatively 
different return maps are obtained which consist of  a small number of  smooth 
lines with discontinuities between them, as shown in Fig. 3b. In this particular 
case, there are three lines with slopes of  magnitude 0.24, 0.95, and 2.15. 
Taking logarithms and weighting these values by their frequency of  occur- 
rence, we find h = 0.40 + 0.05. Thus, the divergence rate, averaged along the 
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Fig. 2. Block diagram showing the experimental method for obtaining return maps. Io2 and Vo2 
are measured when ~%~ passes through the value 0.42 V in the decreasing sense. 
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Fig. 3. Re turn  maps  and spectra for the actual  circuit.  (a) Re tu rn  m a p  of a phase- locked  per iodic  

state for which F = - - f l / [ ~  = 15/8 ( G c = 0 . 0 0 5 5 f ~  -1 and F0 = 1.911). The uni t  of  current  

corresponds to the least significant bit of analog-to-digital conversion. (b) Return map for a 
nonperiodic state with positive divergence rate (G c = 0.0085 f~ 1 Fo = i.798, and F = 1.604). 
(c) Power spectrum of VD2 corresponding to (a). The peaks are instrumentally sharp. 
(d) Power spectrum of Vo2 corresponding to (b). Broadband noise is present and the peaks 
have measurable width. 

trajectory,  is posit ive; the mot ion  is therefore nonper iodic  for this part icular  
choice of  pa ramete rs  (and perhaps  initial conditions).  

Power  spectra of  VD2 were obta ined  with a 400-channel real-t ime 
spect rum analyzer,  and two examples  are shown in Figs. 3c and 3d. The  
first one cor responds  to the periodic state of  Fig. 3a, and is composed  of  
instrumental ly  sharp peaks.  The largest is at the mean  frequency f~ of  this 
oscillator, and the others are at multiples of f~ /8 ,  which is the inverse of  the 
period of  the coupled oscillator system. The baseline noise level is instru- 
mental  noise in the measur ing system, and does not  represent  noise in the 
tunnel diode circuit. It is m a n y  orders of  magni tude  weaker  than the spectral 
peaks  associated with the oscillations. A spect rum of  Vz~ 2 for the state with 
positive h is shown in Fig. 3d. Here there is a substant ial  a m o u n t  of  b r o a d b a n d  
noise. Al though the peaks  still appea r  to be fairly sharp,  examinat ion  at 
much  higher resolution indicates that  their linewidth is finite. Thus,  the 
spectrum is b r o a d b a n d  to within the exper imental  resolution. We examined 
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many states and found that positive h is reliably associated with broadband 
noise. The combination of  these two properties is fairly conclusive evidence 
for nonperiodicity. 

We explored the Gc-Fo parameter space (see Section 2) by varying F 0 
for 25 values of Ge, taking spectra continuously and return maps at selected 
points in order to delineate the periodic and nonperiodic regions. Other 
parameters were held fixed: V0 = 0.260 V, R 1 = 4.3 fL R2 = 4.4 f2, and 
12 - -7  mH. The results are summarized in Fig. 4a. Some regions of  the 
parameter space are periodic and phase-locked at small integer ratios, and 
are labeled by the ratio F of  the mean frequencies of the two oscillators. 
(This was easily measured by electronic counting.) Other regions labeled N 
are predominantly nonperiodic, although there are some isolated periodic 
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Fig. 4. Parameter space defined by the coupling conductance Gc and uncoupled frequency ratio 
Fo. Some of the larger periodic regions are labeled by the frequency ratio F =-fl / f2,  while those 
with higher integer ratios are simply denoted P. Nonperiodic regions are denoted N. The 
region to the left of the dashed line is phase-locked with short-term fluctuations. 
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points within them. Regions labeled P are clearly periodic and phase-locked, 
but F takes on many different values within these regions. For  sufficiently 
strong coupling, F = 1.00 regardless of the uncoupled frequency ratio F o. 
As the coupling is decreased to zero, F approaches F0 and the behavior 
becomes quasiperiodic. 

5. A S I M P L E  N U M E R I C A L  M O D E L  

It is possible in principle that the nonperiodic time evolution of this 
system of coupled relaxation oscillators is caused by microscopic processes 
or external noise. In order to exclude these possibilities, and to better under- 
stand the origin of the nonperiodicity, we constructed a simple model whose 
behavior could be accurately computed. The circuit obeys the following 
equations if stray inductance and diode capacitance are neglected : 

L1 d I1 /d t  = Vo - IaR1 - V m ,  L 2 d l 2 / d t  = V o - I z R  2 - VD2 

Ic = Gc(VD2 - VD1), IDt = 11 + Ic, 102 = I2 -- Ic (4) 

We approximated the current-voltage characteristic of the diode to be 
rectangular, so that VD1 = V L (a constant) as the current increases from 
I~ to I~, and Vm = VH (a constant) as the current decreases from Ir back 
to I=. However, we included in V L and V H the voltage drop across the 
diode caused by the coupling current Ic: 

VL = ]IcRol, Vu = 0.45 V -  [LRoI (5) 

where the diode resistance R v was taken to be 5 f~. 
The advantage of these approximations is that the diode voltages change 

only in discrete steps, and the equations are linear in the intervals between 
these discontinuities. Therefore they can be solved exactly to yield I m ( t  ) 

and I ra( t )  in these intervals for given initial conditions. For example, if both 
diodes are in the low-voltage state, the current Im is of the form 

IDl( t  ) = A e  ~'t + C (6) 

and it will switch when ID(t) = I~. This occurs at a time 

1 C 
t = - In Ip - (7) 

7 A 

provided the other diode does not switch sooner. 
In this fashion, the behavior of the model can be computed accurately 

over 1000 or more oscillations without the errors that often build up when 
integrating differential equations over such long times. Computations were 
done in double precision (17 significant figures) on a PDP 11/10, and the 
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currents are estimated to be accurate to about  one part  in 107 over 1000 
oscillations. 

We obtained return maps by computing I m each time V m = V L, 
V m -- VH, and ID2 = I~, so that D2 had just switched. Sequential values 
of IDa were then plotted as (/DOn+ 1 versus (Ira), ,  as for the experiments 
on the actual circuit. The divergence rate was obtained using Eq. (2), except 
that the limits were replaced by d = 0.01 mA and a value of n in the range 
300 < n < 2000. 

In order to compare different methods of identifying nonperiodicity, and 
to facilitate comparison with the experiments, we computed spectra of  the 
diode voltages for the numerical model. Each voltage is composed of a series 
of  irregularly spaced square pulses Ak(t )  of height V = V L or V, for the 
interval t~k < t < tZk. The Fourier transform of  Ak( t  ) is just 

V 
Ak(oJ) -- io~(2~)1/2 [exp(icot2k) -- exp(icotlk)] (8) 

The desired power spectrum of the entire pulse train is then the magnitude 
squared of  A(~o) = Y~k Ak(CO) �9 However, the finite length of  the pulse train 
broadens the trails of  spectral peaks. To mitigate this effect, we use a 
windowing technique (the " G E O  window ''(~6)) in which A(co) is convolved 
with a windowing function before squaring. 

Before describing the results of  these computations,  we note that there 
is a large literature on the mathematics and numerical simulation of nonlinear 
oscillators. Chirikov (~7) has recently reviewed this subject, with emphasis on 
Hamiltonian systems rather than the dissipative system considered here. Our 
main purpose in studying the behavior of  this model is to better understand 
the experimental observations discussed earlier. 

6. N U M E R I C A L  RESULTS A N D  C O M P A R I S O N  

We computed return maps, divergence rates, and (sometimes) spectra 
for several hundred points in the parameter  space defined by G~ and F o while 
keeping other parameters constant: Vo = 0.17 V, Rt = 4.3 ~, R 2 --- 4.2 fL 
I~ = 3 mA, I~ = 22 mA. Examples of  return maps and spectra are shown in 
Fig. 5. The first return map corresponds to a periodic state with the oscillators 
locked at the ratio F = 15/8. After an initial transient, the mapping converges 
to the set  of  eight points shown on the graph. The divergence rate is clearly 
negative: .~ = - 0.134. Other regions of  the parameter  space yield nonperiodic 
time dependence, as shown, for example, by the return map of Fig. 5b, which 
is composed of  steep lines rather than discrete points. In this case, 
h = 0.684 _+ 0.005. The dependence of h on F0 at constant Gc = 0.008 f U  1 
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Fig. 5. Return maps and spectra for the numerical model. (a) Return map of a phase-locked 
periodic state for which F =  15/8 (G c = 0.0090 f~ -1 and F 0 = 1.880). (b) Return map for a 
nonperiodic state with positive divergence rate (Gc = 0.0075 f~ 1 and Fo = 1.689). (c) Power 
spectrum of V m corresponding to (a). The peaks are instrumentally sharp. (d) Power spectrum 
of V m corresponding to (b), showing the presence of broadband noise. 

(Fig, 6) demonstrates  that  the distinction between the periodic and non-  
periodic regions is clearly evident f rom the sign changes of  h. 

A numerically computed  spectrum corresponding to Fig. 5a is shown in 
Fig. 5c, and it has the features generally expected of  a periodic system. 
The peaks are as sharp as the numerical resolution (0.0025 kHz), a l though 
the logari thmic scale makes them appear  wider. In addition, the largest peaks 
are at least eight orders of  magni tude above the background  noise level 
(at the lower left side of  the graph), which is presumed to be numerical 
noise generated by the finite computa t ional  accuracy. This spectrum has 
dynamic  range and resolution superior to what  is normal ly  attainable in 
experiments. It nevertheless bears a remarkable  resemblance to that obtained 
f rom the actual tunnel diode circuit (Fig. 3a), except that  the largest peak 
is the 15th one instead of  the 8th one. This difference is caused solely by 
the fact that  the numerical spectrum was computed  for the faster oscillator 
(Vm), while the experimental spectrum was measured for the slower one 
(Vo2). A spectrum corresponding to the nonperiodic  state of  Fig. 5b is shown 
in Fig. 5d. It consists predominant ly  o f  b roadband  noise, as one might expect 
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Fig. 6. Dependence of the divergence rate on uncoupled frequency ratio F 0 for the model, 
showing that the regions of  positive h (open circles) are easily recognized. 

from the large divergence rate. For the model, as for the circuit, broadband 
spectra and positive divergence rate occur together. For states which had a 
very low level of noise (h < 10 -3) positive divergence rate seemed to be a 
more sensitive indicator of nonperiodicity than broadband spectra. In these 
cases the spectra were ambiguous, consisting of many overlapping peaks. 

The Gc-F o parameter space is shown in Fig. 4b. Although it was com- 
puted for a value of V o different from that of Fig. 4a, the resemblance between 
the experimental and computed behavior is striking. Both the circuit and 
the model show a large phase-locked and periodic 1/1 region at the upper 
left, and other phased-locked regions at the same locations, and of about 
the same extent. In particular, the 3/2 and 5/3 regions are similar in the two 
cases, and the line separating the 2/1 state from the more complex periodic 
states below it has almost exactly the same slope in the two cases. Most 
importantly, both the circuit and the model show a large region of non- 
periodic behavior near the center of the diagram. 

There are also several apparent differences between the experimental and 
computed parameter space diagrams. The circuit shows several smaller non- 
periodic regions that are missing from the model. Furthermore, the 2/1 region 
of the model shows a large protrusion (to the left of the dashed line) in which 
the divergence rates are clearly positive, while the spectra consist of  fairly 
sharp peaks coexisiting with noise. 2 These states are phase-locked only on the 
average, with nonperiodic short-term fluctuations. Such phase-locked non- 
periodic states have not been detected in the circuit. However, it is possible 
that this difference is an artifact of the particular diagnostic techniques that 
were employed, which are more sensitive to nonperiodicity in the model than 
in the circuit. For example, the 10-bit accuracy of the analog-to-digital con- 
version does not permit the sign of h to be determined if [hi < 0.05 or if the 

2 This phenomenon has recently been called "semiperiodicity" by E. N. Lorenz (preprint). 
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lines of the return map are very short. On the other hand, it is also possible 
that this difference between the model and the laboratory system is due to the 
rectangular approximation to the I-V characteristic of the diodes. 

It should be noted that Figs. 4a and 4b are sections of a parameter space 
of higher dimensionality. The structure of  this space depends somewhat on 
the parameters held constant, and this may cause some of the differences 
between the two figures. Brief scans of this plane at other voltages indicated 
that the shapes of the regions more closely approximate those of Fig. 4a for 
some other values of V 0 . We chose 0.17 V for a detailed scan because it yielded 
high values of h. (We did not expect the numerical value of Vo to match that 
of the circuit, because of the approximations we made for the diode 
characteristics.) 

Caution is also necessary in discussing the relationship between Fig. 4a 
and Fig. 4b because of the possible effects of hysteresis, and the dependence 
on initial conditions. In studying the circuit, where initial conditions cannot 
be freely chosen, we varied the parameters Gc and F0 monotonically in order 
to obtain reproducible results. In the model, we simply kept the initial con- 
ditions constant. These different ways of dealing with hysteresis could affect 
the degree of correspondence between the circuit and the model. 

7. C O N C L U S I O N S  

Numerical models of dissipative dynamical systems are in widespread 
use. However, our intent is to test the detailed correspondence between a 
model and the physical system it represents. That is possible here because 
there are only a few degrees of freedom, and the circuit equations and diode 
characteristics are well known. In general we find that the major periodic and 
nonperiodic regions of the parameter space can be correctly predicted by a 
simple model. Furthermore, the model yields divergence rates comparable in 
magnitude to the measured values. The close correspondence between the 
model's behavior and that of the circuit is convincing evidence that the 
obselved nonperiodicity involves only a few degrees of freedom and is not due 
to microscopic noise, external noise, or other extraneous effects. This is 
encouraging, since a similar hypothesis about the origins of  fluid turbulence 
has been much more difficult to establish. 

Finally, we have demonstrated that the property of sensitive dependence 
on initial conditions, or positive divergence rate of phase space trajectories, 
can be used for the diagnosis of nonperiodic motion in laboratory experiments 
as well as in numerical computations. While this method will not be as 
straightforward to implement in systems with many degrees of freedom, it 
does provide a useful alternative to spectral techniques in some cases. 
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